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An exact analytical solution is given of the direct axisymmetric steady dynamic problem in the theory of elasticity of the motion, 
with an arbitrary constant subsonic velocity v = c along the interface of a rigidly coupled layer 0 _< z _< H and a half-space z _< 0, 
of a circular transverse shear crack 0 <_ r <_ r ° + ct  (r ° < 0) with and without a cavity at its tip. Using Hankel transformation in 
terms of biwave potentials, a general solution of the fundamental equations of motion in the theory of elasticity and the basic 
solutions of the first fundamental boundary-value problem are separately constructed for the layer and the half-space for the 
case of arbitrary normal and shear stresses in the plane of separation z = 0 in a moving cylindrical system of coordinates 
r 1 = r + ct, z 1 = z. A special regularization of the main solution is carried out which ensures the convergence of the integrals 
for all stresses and displacements while preserving the high accuracy of the solution to whatever level may be desired [1, 2]. On 
the basis of the main solutions, a mathematical formulation is given of the mixed problem of the motion of a transverse shear 
crack with a cavity at the tip and its reduction to a system of three singular integral equations with Cauchy kernels which allows 
of regularization by the Carleman-Vekua method in terms of the closed solution of the corresponding characteristic system of 
singular integral equations. When the width of the cavity vanishes, one of the equations of the system solves the problem of a 
transverse shear crack without a cavity. Criteria are established for the existence of a cavity and its absence as a function of the 
elastic and velocity characteristics of the layer and half-space and the velocity of motion of the crack c. © 2005 Elsevier Ltd. 
All rights reserved. 

The problem described is intended for investigating interference waves as well as proper surface and 
boundary Rayleigh and Stoneley waves which are generated by a moving crack according to the law of 
synchronism. Its possible relation to the source of moving forces of an earthquake can be perceived. 

1. F O R M U L A T I O N  O F  T H E  B A S I C  A N D  M I X E D  P R O B L E M S  

The two-layer half-space which is considered consists of a layer of arbitrary thickness H and a foundation 
layer of infinite thickness (a homogeneous half space) to which the numbers 1 and 2 are assigned 
respectively. Young's moduli of elasticity El,  Poisson's ratios vi and the density Pi of the material 
(i = 1, 2) can take different and arbitrary values. We will take the origin of a cylindrical system of 
coordinates r, z in the plane of separation of the layers and we will direct the O z  axis upwards, orthogonal 
to the layers. In this system of coordinates, the upper layer 0 _ z _ H and the foundation layer z _ 0 
are separated by the plane z = 0, and the plane z = H is the upper boundary of the upper layer (Fig. 1). 

The outer boundary z = H is stress free. At the instant of time t = 0 in the plane of separation of 
the layers z = 0, a circular transverse shear crack 0 <_ r + ct  < r ° + ct  (r ° >_ 0) occurs spontaneously and 
starts to move at an arbitrary constant subsonic velocity a~ = c and, outside the crack, the conditions 
for the rigid coupling of the layers, which ensures the continuity of the normal and shear components 
of the stresses and displacements, must be satisfied. We will initially assume that the edges of the crack 
are in contact everywhere, have bilateral bonds and, during the motion, rub against one another with 
friction, the law of which is subject to determination from the condition of the synthesis of all of the 
boundary conditions in the plane of the crack 0 < r + ct, z = 0. This formulation of the problem will 
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only be correct when the axial normal stresses in the whole of the crack domain 0 <_ r + ct < r ° + ct are 
compressive stresses (of negative sign). However, if a zone (zones) of tensile normal stresses appears 
in the crack domain, then, when there are unilateral bonds in this zone (zones), the edges of the crack 
will tear away from one another and from a cavity (cavities). It is only possible to establish the signs of 
the normal axial stresses in the whole crack domain by a numerical analysis of the problem. The crack 
tip r = r ° + ct, at which the normal axial stresses undergo an infinite discontinuity, is an exception. The 
analytical solution of the initial problem of a crack without a cavity enables us to prove that the normal 
axial stress intensity factor at the crack tip changes sign over the range of change in the elastic and 
velocity characteristics of the layers at any subsonic velocity of the crack propagation. Consequently, 
in the case of certain elastic and velocity characteristics of the layers, a zone of normal tensile stresses 
appears in the neighbourhood of the tip and therefore, a cavity is formed at the tip under conditions 
when there is unilateral bonding of the edges of the crack in this zone. 

The above conditions give a sufficient basis for formulating the key problems being considered of a 
transverse shear crack (without a cavity) and with a single cavity at the tip. A numerical realization of 
the analytical solutions of these problems will enable us to establish the specific characteristics of the 
layers and the crack propagation velocity a~ = c for which they are correct and to investigate the possibility 
of the appearance of intermediate cavities in the case of other characteristics of the problem. This, in 
turn, will provide sufficient grounds for formulating the generalized problem of the propagation of a 
transverse shear crack when there is an arbitrary finite number of cavities. 

The analytical solutions of the fundamental and mixed problems described below are given in a moving 
cylindrical system of coordinates r I = r + ct, z 1 = z in the dimensionless variables P = rl/b, ~ = Zl/H, 
where b = r 0 + ct is the value of the radius of the circle, taken as the linear unit of measurement. Here, 
it should be recalled and explained that, in the steady-state problem being considered, all the mechanical 
characteristics and the required stresses and displacements are independent of the time t. One should 
therefore consider the ratio 9 = ri/b as an independent dimensionless variable in the radial semi-axis 
0 _ 9. The upper layer (i = 1) is located in the interval 0 < ~ _ 1 in the dimensionless vertical semi-axis 
O~ and the foundation layer (i = 2) is located in the unbounded interval ~ < 0. The crack is located in 
the plane ~ = 0 in the area of the circle 0 < 9 - 1 and the cavity is located in the area of the ring 
s° - 9 <- 1, where o~ ° = a/b is the dimensionless radius of the internal contour of the cavity which is to 
be determined from the condition that the normal axial stress intensity factor vanishes (Fig. 1). The 
magnitudes of the ratios 

~ , = H / b ,  8 = El~E2, )C = 8 ( l + v 2 ) / ( l + v 1 ) ,  Gi = E i / ( 2 ( l + v i ) ) ,  i = 1,2 (1.1) 

are the characteristic geometrical and elastic parameters of the mixed problem and the velocities of 
the longitudinal stress-strain waves cli and the transverse shear waves Cai 

2(1 + v i )G i G~ 
Cli = i - 2vi f3 i '  c2i = , i = 1, 2 (1.2) 

are the velocity characteristics of the layers. We will denote the normal axial and shear stresses and the 
axial and tangential displacements in a layer with number i = 1, 2, by %i(P, ~), Z~zi(P, ~), wi(p,  ~) and 
ui(p, ~) respectively. 
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2. THE G E N E R A L  S O L U T I O N  OF THE F U N D A M E N T A L  
E Q U A T I O N S  OF M O T I O N  

The fundamental equations of motion in the theory of elasticity in the variables ui(r, z) and wi(r, z) in 
the layers i = 1, 2 

1 01i Pi 02ui 1 Oli [i  02Wi 1= ) A A w  i 
"ui +1 -2V i 0r = G"] 0t --'-T' 1 - 2 v i  0Z = G"-~. 0t "-'5- 

+ 

r ~ 

l~¢rO__ ~ 0 2 Ou, u, Ow, 
I i = + - -  A = rOrt, OrJ + 0z  2' ~ + 7 0Z 

in the moving system of coordinates rl = r + ct, Zl = z can be written, taking into account the relations 

02ui 2(1 O f  r 0"~ 4]ui  ' 02Wi c21 O ( r  O ) w  

in the form 

( k2] 2i 1 Oli 1 Oli 
A 2 i -  ~ ui + 1 - 2 v i 0 r  1 - 0 ,  A2iwi a 1 - 2 v i 0 z  1 - 0 (2.1) 

rt ) 

,2 1 D {r D "X + 0 2 / Z bU i Ui + OW i 
A2i= /¢2i~l~rtt l~rl)  ~'-'2' k2i= 4 1 - 2 '  l i= ~ r l + r  1 --OZl (2.2) 

0Z 1 C2i 

The general solution of the equations is obtained in the form 

l+vi oztpi l+vi( 2 1  3__(r 0 ~ 02) 
U i = Ei OrlOZ 1' Wi = Ei t2(1-vi)AZi+c22iriOrl t, ITqrl)--~z21y pi (2.3) 

where tpi(rl, zl) are arbitrary functions which satisfy the biwave condition 

AliA2iq)i(rl,  Zl) = 0 (2.4) 

with the operators A2i (2.2) and 

,2 1 0 /" 0"~ 0 2 / 2 
Ali=Kli~O-~rit'rl~r~rl)+'S-2' kli= 41 c2 (2.5) 

Ozi cli 

The normal axial and shear stresses are determined in terms of the displacements using Hooke's law 

c 1 0 (  O'~ 0 ~ . 
~z~ = (2-vi)A2i+7~ritr l"~ri)--~z2,i~itr l 'z') 

v2i ~'lJ 
(2.6) 

T, rzi = ~ l ( ( 1 - V i ) A 2 i  1¢2 l~-~l(rl 0 ~ 02"/ . + 

2c~irl 

In the case of a subsonic velocity of motion of the crack when the conditions 1 - c2/c~i > 0 (i = 1, 2), 
for which the radicals k~i (2.5) and k2/(2.2) take real values, are satisfied, for the biwave functions 
tpi(rl, zl) (i = 1, 2) we adopt the general solution of Eq. (2.4) in the form of the Hankel integral 

, -kl o,Z I 
= ~ k 2 ' ~ Z l  C*(ct)e -k:~az~ + D i (oQe ' )Jo(O~rl)dO~ (2.7) % I ( A * ( a ) e  + B*(ct)e~'#z'+ 

0 
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whereA*, B*, C~ and D* are arbitrary functions of the variable of integration, which are to be determined 
from the boundary conditions for the main and mixed problems with the exception of C2" (cz) = 
De* (c0 = 0 (0 < a < oo). The functions (Pi(rl, zD in the form of the integral (2.7) are biwave potentials 
in terms of which, using formulae (2.3) and (2.6), we obtain constructive expressions for the 
displacements and stresses in the layers i = 1, 2. In these expressions, we introduce the dimensionless 
variables p = ri/b, ~ = z J H  and the new unknown functionsAi(13), Bi(~), Ci(~), Di(~) of the parameter 

= bo~ with the appropriate normalizing factors which eliminate increasing exponents and thereby ensure 
the correctness of the solution. As a result, we can represent the normal and shear stresses and the 
axial and radial displacements in the form 

~zi = f ~Azi(~, ~)Jo(P~})d~ , "~rzi ~- I~A'ci(~ ' ~)Jl(P~)d~ 
o o 

Ei 
Ei = [Awi(~,~)Jo(p[J)d[J, ( l+vi)bUi  = [Aui(~,[J)Jl(p~)d~J (1 + vi)b Wi 

o o 

(2.8) 

Azi = - Aik2iTl2 i + Binir l l i  + Cik2illl2i - Dinil t l l i  

A.ci = Aimfl]2i  + Oisil]li  + Cimilll2i + Disil l l l i  

Awi = - A i T I 2  i + B i f  i r l l i -  C?ql2i + O i f  illtli 
(2.9) 

Aui = Aik2irl2i + B ik l i r l l i  - Cik2i l l l2 i -  Dik l i l l l l i  

nji = exp(-)~Skji(~i-1 -- ~ ) ) '  ~ j i  : exp(-X~Skji(~- ~i)), 
2 2 

n i = k l i ( ( l  - v i ) ( k l i - k 2 i  ) - 1) ,  m i = (1 +k22i)/2 

s i = vi(k21i-k22i)+(l+k22i)/2, f i  = (1-2vi)(k~i-k2i)2 _1 

t o = l ,  4 1 = 0  

(2.10) 

3. R E G U L A R I Z E D  BASIC S O L U T I O N  F O R  THE U P P E R  LAYER 

The regularized basic solution for the upper layer is constructed with the following boundary conditions 
on the outer surface ~ = 1 and on the interface of the layers ~ = 0 

(Yzl = P*(P), Zrzi = q*(P) when ~ = 1 

C~zl = P(P), "Crzl = q(9) when ~ = 0 (3.1) 

wherep(p) and q(p) are arbitrary functions on the semi-axis 0 _< p < oo, which can be represented by 
the Hankel integrals 

P(P) = I[3/3(13)Jo(Pl~)d~, q(9) = [[J~l(~)J,(P~)d[ 3 
o o 

(3.2) 

~(~3) = Ipp(p)Jo(p~)dp,  {1(~) = IPq(P)J , (P~)dP 
o o 

(3.3) 

p*(p) and q*(p) (0 < p < oo) are functions which may be as small as desired, which are intended for 
regularizing the solution of problem (3.1)-(3.3). We will seek the regularized solution of this problem 
in the form of the superposition of the separate solutions corresponding to a normal load p(p) with 
small overloadp*(p) when q(p) - q*(p) = 0 and a shear load q(9) with a small overload q*(p) when 
p(p) =p*(p) = 0. The small overload functions are represented in the form 
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P*(D) = -I[3R([3)A~p1( 1, [3)Jo(P]3)d[3 
O 

o ~  

q*(P ) = - I  ~JR(~J)Auql( 1, 13)Jl(P[~)d[~ 
0 

(3.4) 

where Awpl(1 , ~]), Auql(l, [~) are functions of the compliance, which are represented by the formulae 
Awl(4, ~), A,1(4, ~) (2.9) on the outer surface of the layer 4 = i in the case of the normal loadp(p) and 
the shear load q(p) respectively. At the same time, we assume that 

R([~) = eexp(-n[3), 0 < ~  ~ 1, n >> 1 (3.5) 

Note that the introduction of the overload functionsp*(9) and q*(p) into the boundary conditions 
(3.1) is solely intended to ensure, via the function R([3) (3.5), the convergence of the integrals (2.8) for 
the displacements which, in the case ofR([~) = 0 and, therefore, in the case ofp*(p) -q*(p)  - 0, diverge 
in the lower limits. However, at the same time, it is required that the moduli ]P*(P)[ and [q*(p)] 
(0 _ p < oo) and the modulus of the principal loading vectorp*(p) (the principal overload vector q*(P) 
vanishes according to the symmetry condition) do not exceed the magnitude 8 = 8(e, n) > 0, which 
may be as small as desired and depends on the constants e and n of the function R([3) (3.5). When c ~ 0 

1 , , and n --~ ~ ,  we have 8(a, n) = O(n- x/-~) and, therefore, the functionsp (p) and q (9) in boundary 
conditions (3.1) can be interpreted as infinitesimal functions of the regularization of the basic solutions 
while preserving its form as high a degree of accuracy as desired. 

Substituting formulae (2.8), (3.2) and (3.4) into boundary conditions (3.1), we obtain the boundary 
conditions for the functions A~,1(4, [~) (v = z, ~, w, u) (2.9) expressed in terms of the sets of unknown 
functions Asl([~), Bsl(]3), Cs1([3) and DsI([~) (0 _ 9 < oo) which have been given the subscript s in the 
case of a normal load (s = p) 

A z p l ( 1 , ~ ) + R ( ~ ) A w p l ( 1 , ~ )  = O, A x p l ( 1 , [ 3 )  = 0 

Azpl(0, [~) = p([~), A,rpl(0 , [~) = 0 
(3.6) 

and in the case of a shear load (s = q) 

Azql(1,  l~ ) = O, A z q l ( 1 , ~ ) + R ( ~ ) A u q l ( 1 , ~  ) = 0 

Azql(O , 1~) = O, Aa:ql(O , [3) = ~](~) 
(3.7) 

The equalities (3.6) and (3.7) in expanded form, with formulae (2.9) substituted into them, are the 
correct systems of functional equations (SFE) for the determining the unknown functionsAsl(~), B~.1([3), 
Cs1([3) and D,I(~) (s = p, q) in the case of normal and shear loads. On solving the expanded SFE (3.6) 
and (3.7) using Cramer's rule, we find these unknown functions, expressed in terms of the transforms 

F([3) and ~(13) (3.3) respectively, in an analytical form and substitute them into the general solution (2.8). 
A a result, we obtain the regularized solutions of the boundary-value problem for the upper layer 
(i = 1) separately for the normal loadp(9) and shear load q(P) on its lower boundary plane 4 = 0. The 
superposition of these solutions gives the required regularized basic solution of problem (3.1)-(3.3) 
for the upper layer (i = 1). 

The following representations of the axial and radial displacements Wl(p, 4) and Ul(p, 4) on the lower 
boundary of the layer 4 = 0 

wl(p, 0) = IAwl(~J)Jo(p~)d~3, u,(p, 0) = IAu,([~)Jl(P~)d~ (3.8) 
0 0 

Aul = E~1(1 +Vl)bDul(~ ), Ovl( l~  ) = Avpl(~)/9(l~ )+Avql ( [~)g] ( [3) ,  v = w, u (3.9) 

are required to formulate the mixed problem of the crack propagation from the basic solution described 
above. 
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Omitting the unwieldy analytical expressions for the functions Z~.osl([~ ) ( ~  = W~ b/; S = p, q), which 
can be obtained using the method described above with the transformsfi(13 ) and q(~) in the SFE (3.6) 
and (3.7) replaced by unity, we will present only the leading terms of their asymptotic expansions when 
13~0 

Awp l(~),Auq 1(1~) = - E  -I 4 - 0 ( ~ )  

(Awq,(13),Ap,(!3)) = _ 2 (  1 Vl ) 
2 ' - -  2 + O(~)  

1 -k21 1 + v  I - ( 1  -Vl)k21 

(3.1o) 

and when 13 ~ oo 

mupl(]~) muql(~) Aupl -Auql 

aos 
Aus I = ~ ,  1) = w, U; s = p,  q 

Rtl 

+ O(exp(-2~,k21~) ) 

(3.11) 

Here 

awp 1 = (kll +k21)(1 +(1 -2Vl)k~i ) 
2 

aup I = 1 +k21-2v lk21(k11  +k21 ) 

awq I = 2(1 - (kll + k21)((1 -Vl)kl l  - (1 - 2Vl)k21)) 

auq I = 2(1 - V l ) k l l k 2 1 ( k l l  + k21 ) 

Rll = 2Vlkz1(kll +k21 ) + (1 +k~l)((1 -v1)k11(kll +k21 ) - 1) 

(3.12) 

On the basis of the asymptotic formulae (3.10)-(3.12), it is possible to give a rigorous proof of the 
convergence of the regularized integrals (3.8), regardless of the unknown bounded transforms f(f3) and 
q(13), which enables us to reduce the initial mixed problem to a system of singular integral equations, 
which is developed below. 

In concluding this section, it is necessary in passing to dwell on the properties of the asymptotic 
functions (3.11) and (3.12) at infinity, which determine the form of the solution of the mixed problem 
and the singularities at the crack tip as a function of its velocity v = c > 0. All the quantitiesA~l, avsl 
(a~ = w, u; s = p, q), Rll (3.10), (3.11) depend, via the radicals k21 (2.2) and kll (2.5), on the constant 
subsonic velocity c < c21 as a parameter of the actual problem and are therefore functions of c. In this 
case, the properties 

ao, l ( c ) > 0 ,  v = w , u ;  s = p , q  (3.13) 

are either obvious or are easily proved. 
The function Rl f f c )  (3.12) plays a special role in the solution of the problem of the crack propagation. 

It is an analogue of Rayleigh's function in the similar dynamic problem of surface waves in a 
homogeneous half-space. The zeros of the function Rt f f c )  are determined from the irrational algebraic 
equation R a ( c )  = 0, which reduces to the following well-known rational algebraic Rayleigh equation 
in x~ = c2/c21: 

( 1 - - V I ) X ~ - - N ( 1 - - V 1 ) x ~ + 8 ( 2 - - V 1 ) x 1 - -  8 = 0 (3.14) 

The resonance velocity CR = C21 X~IR of the natural non-dispersing Rayleigh waves, which are moving 
along the outer surface of the two-layer half-space, are determined in terms of the real root of Eq. (3.14) 
X1R, 
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4. T H E  BASIC  S O L U T I O N  F O R  T H E  F O U N D A T I O N  L A Y E R  

The basic solution of the first fundamental problem for the foundation layer (i = 2) must satisfy the 
same boundary conditions at the interface of the layers ~ = 0 as in the analogous problem for the upper 
layer, namely, conditions (3.1) 

Oz2 = p(p),  "Crz 2 = q(p) when ~ = 0 (4.1) 

The functionsp(p) and q(p) are defined by formulae (3.2) and (3.3). 
Substituting expression (2.8) and (3.2) for the stress ~z2, %z2 and the functionsp(p) and q ( 9 )  into the 

equalities (4.1) and taking account of relation (2.9) and the fact that C2(~3) =- D2([3) - 0, we arrive at 
the SFE inA2(}) and B2(~) 

-k22A 2+n2B 2 = f i (~ ) ,  m z a 2  + s2B 2 = gt(~J ) (4.2) 

The coefficients n2, m2 and s 2 are defined by formulae (2.10) for i = 2. 
From system (4.2), we find expressions for the functionsA2(~) and B2(I~) and we substitute these into 

the general solution (2.8) when i = 2. As a result, we obtain the basic solution for the foundation layer. 
The representations of the axial and radial displacements Wz(p, 4) and u2(9, 4) at the interface of the 
layer ~ = 0, which are required for subsequent use, have the form 

W2(p, 0) = I A w 2 ( ~ ) J o ( p ~ ) d ~ ,  bt2(p, 0) = I A u 2 ( ~ ) J l ( P ~ ) d ~  (4.3) 

0 0 

mt~2(~) --- E21(1 + v2)bDo2(~3),  Dv2(~ ) = mvp2(~)f i (~)  d" mvq2(~)O(~) 

avs2(C). 
Al~s2 -~ Avs 2 = RI2(C) , tl = w, u; s = p,  q 

(4.4) 

The tunctions a,~s2(c) and Rl2(c ) of the velocity c as a parameter are determined using formulae (3.12), 
taking account of the replacement of vl, kll and k21 by v2, k12 and k22 respectively. All the properties 
of the functions a~l  and Rll  , which were mentioned at the end of Section 3 are extended to the functions 
a,~s2 (a) = w, u; s = p ,  q)  and Rt2 in the interval 0 < c < c22. In particular, Eq. (3.14), when account is 
taken of the replacement of vl andxl by v2 andx2 = c2/c22, is the dispersion equation for the foundation 
layer (the half-space). The resonance velocity cs = c22 x'~as of the natural non-dispersing Stoneley waves 
propagating along the interface of the layer and the half-space ~ = 0 is determined in terms of the real 
root of this equation X2s. 

5. F O R M U L A T I O N  AND S O L U T I O N  OF T H E  M I X E D  P R O B L E M  OF 
T H E  P R O P A G A T I O N  OF A C R A C K  W I T H  A C A V I T Y  AT T H E  TIP 

The whole of the unbounded domain L = (0 _ p < oo) of the outer boundary plane ~ = 1 is free from 
normal and shear stresses: 

Ozl = 0, Xrz J = O, p E  L (5.1) 

The still unknown friction law qr(9) for the shear stresses, which are directed towards the motion 
(with a minus sign) and the conditions of continuity for the axial displacements 

"~rzl -~ "~rz2 = --qT(P), W1 = W2' D • L1 (5.2) 

must be satisfied at the interface of the layers ~ = 0 in the region of contact of the sides of the moving 
crack L1 = (0_  p < a°). 

In cavity domain L2 = (cz ° < p < 1), the axial and shear stresses are specified 

(~zl : OZ2 = O, "~rzl : ~rz2 : O, p • L 2 (5.3) 
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and, outside the crack in the domain L 3 = (1 < p < oo), the conditions of continuity of the axial and 
radial displacements 

W 1 = W 2, U l = U 2, 13 ~ L 3 (5.4) 

and the normal and shear stresses 

(Yzl = (Yz2' g'rzl = T'rz2' p E L 3 ( 5 . 5 )  

must be satisfied. 
The basic solutions of Sections 3 and 4 automatically satisfy all the boundary conditions (5.1) and 

(5.5) in the case of arbitrary transformations/7([3) and ~(13) of the axial and shear stresses at the interface 
of the layers { = 0, which are to be determined from the boundary conditions (5.2)-(5.4). The choice 
of the law of friction force qT(P) (0 < 13 < CZ °) must ensure the synthesis of all these conditions, by which 
we mean the reduction of the solution of the initial mixed problem (5.1)-(5.5) to a single uniquely 
solvable system of integral equations. The mathematical apparatus used here enables us to determine 
the function qT(P) uniquely. 

It will next be established that it is the generalized Coulomb friction law 

qr(P) = P(~tPT(9) + Q), 13 e L I (5.6) 

which synthesizes the boundary conditions and, at the same time, satisfies the condition of axial symmetry. 
Here, pT(p) is the intensity of the pressure of the layers which are rubbing against one another in the 
region of contact of the sides of the moving crack, g is the dimensionless constant coefficient of friction 
and Q is the tangential component of the constant bonding force of the layers. The friction law (5.6) 
will will required in the final stage of the derivation of the system of resolving integral equations but, 
for the present, we will begin the successive transformation of the boundary conditions (5.2)-(5.4) by 
assuming that the function qT(9) is arbitrary. 

Substituting expressions (3.2), (3.8) and (4.3) for the integral representations of the stresses and the 
basic solutions for the displacements in the plane of the crack ~ = 0 into the boundary conditions 
(5.2)-(5.4), we arrive at a system of three integral equations in the Hankel transforms f(13) and g([~) 

I~g/(13)Jl(P]3)d[ 3 = -qT(P), I D w , 2 ( ~ ) J o ( P ~ ) d ~  = O, 9 ~ Li (5.7) 
0 0 

I~/~([3)Jo(P~)d[3 = O, I[3~(~)Jl(p~)d~ = O, 
0 0 

P e/;2 (5.8) 

f D ~ , 2 ( ~ ) J o ( P ~ ) d  ~ = O, I D ~ , 2 ( ~ ) J l ( p ~ ) d ~  = O, 
o o 

9 ~ L 3 (5.9) 

where 

DvI2( [~  ) = A v p l 2 ( ~ ) f i ( ~  ) + A v q l 2 ( ~ ) ~ / ( [ ~ ) ;  D = w , u  (5.10) 

A v s l 2 ( ~  ) = A v s i ( ~ ) - ~ A v s 2 ( ~ ) ;  D = W,U; S = p , q  (5.11) 

The functions Avsl([3) and Avs2(13) are defined in Sections 3 and 4 by formulae (3.9) and (4.4). 
In the system of equations (5.7)-(5.9), we change from the initial transforms fi(~) and q(~) to the 

new unknown transforms f(13) and ~(1~) using the formulae 

f(13) = D,12(13), ~(13) = Dw~2(13) (5.12) 

corresponding to the local functions f(p) and g(p): 
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f1(9),  9 c  L 1 

f (P )  = J f2(P) ,  p e L2; 

Lo, DE L 3 

= I g2(p)' P~  L 2 

g(P) (0,  9 6 L l k J L  3 
(5.13) 

the transforms of which 

f(13) = fl(13)+f2(13), ~(13) = ~2([3) (5.14) 

are defined by the Hankel integrals 

fk(~) = IPf~(O)Jo(O~)do, k = 1,2; g2(~) = IPg2(O)Jl(o~)dP (5.15) 
L k L2 

When account is taken of the constructive expressions for the functions D,12([~) (v = w, u) (5.10), 
the equalities (5.12) are an SFE in the transforms/5([~) and ~([~). From this SFE, we find expressions 
for the initial transformsfi([3) and q([3) in terms of the new transformsf([~) and g([~) 

fi(~) = Nu([J), 71(~) = Nw([J) (5.16) 

No(B) = Avf(~)f(~ ) + Aog([~)~,([~), 19 = w, u (5.17) 

where 

Awf - Awp 12 Awg = Aup 12 Au f = Awq 12 Aug = Auq 12 
mpq ' Apq ' mpq ' mpq ' 

Apq = Awpl2Auql2- mwql2Aupl2 

(5.18) 

Substituting expressions (5.12) and (5.16) into Eqs (5.7)-(5.9), we obtain the following system of three 
integral equations in the new transforms f([~) and if(J3) 

I~Uw(~)Jl(p~)d~ = -qT(P), Ig(~)Jo(P~)dl]  = 0, p ~ L l (5.19) 
o o 

I~Nu(~)Jo(p~)d~ = 0, I~Nw(~)Jl(p~)d~ = O, 
o o 

13 E L 2 (5.20) 

I~,(~)Jo(p~)d ~ = O, I f (~)J l (p~)d~  = 0, p e L 3 (5.21) 
o o 

Next, we carry out the following transformations of Eqs (5.19)-(5.21). We integrate the first equation 
with respect to p in the limits from 0 to P and differentiate the second equation with respect to 9=. We 
multiply the first equation of (5.20) by p and integrate with respect to 9 within the limits from cz ° to P 
and then divide by 9. The second equation is integrated with respect to p within the limits from (z ° to 
9, the first equation of (5.21) is differentiated with respect to 9 and the second equation is multiplied 
by p, differentiated with respect to P and then divided by p. As a result, the transformed equations acquire 
the form 

INw(~)Jo(P~)d~ = F(p) + C 1, I ~ ( ~ ) J l ( P ~ ) d ~  = 0, 
o o 

p ~ L 1 (5.22) 

fN , (~)J , (p~)d~ = D2__, tNw(~)Jo(P~)d~ = C 2, 
P o o 

p E  L 2 (5.23) 
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o o 
p E  L 3 (5.24) 

where 

P 

F(p) = IqT(X)dx 
o 

(5.25) 

and C1, C 2 and D2 are arbitrary constants which are determined below. According to the theorem for 
the inversion of Hankel transformsy03 ) and g(~) (5.14), (5.15), the second equation of (5.22) and both 
equations of (5.24) turn into identities, and the latter are therefore excluded from further considera- 
tion. We emphasize that future references to formulae (5.22) refer only to the first equation, while the 
identity has played its role and is no longer required. 

When account is taken of formulae (5.14), the remaining equations (5.22) and (5.23) in the bounded 
mixed contours L 1 = (0 < p < (x2), L 2 = (s  ° < p < 1) form a closed system for determining the unknown 
transformsfl ,f2 and g2 (5.15). For the further transformation of this system it is necessary to separate 
out the leading terms of the functions (5.18) at infinity when [3 -~ oo 

Aur(~J ) = Aur + Aver(~); D -- W, U; r = f ,  g (5.26) 

where 

Awf - AwplZ Awg = Aupl2" A,f = Awql2 Aug - Auql2 
Apq ' Apq ' Apq ' Apq 

Apq = Awp12Auq12- Awq12Aup12 

Awpl2 = -(Awp I + )~Awp2), Awql2 = Awq I -)~Awq2 

Aupl2 = Aup I - )~Aup2, Auql2 = -(Auq 1 + )~Auq 2) 

(5.27) 

The quantities Avsl and Avs 2 (1) = w, u; s = p, q) are irrational algebraic functions of the velocity c, 
which are defined by formulae (3.12) and (4.4). 

When [3 --> ~ ,  the functions ZX*r([3 ) = ZX~r([3 ) -Avr which are determined using formulae (5.26), are 
of the order of infinitesimal functions: 

A*r(~) = O(exp(-2)~k2~)); v = w, u; r = f ,  g; k 2 = min(kzl, k22 ) (5.28) 

The special mathematical apparatus for investigating an analogous system of integral equations in 
the fundamental mixed problem of the theory of elasticity can be completely extended to the system 
of integral equations (5.22), (5.23) in expanded form, taking account of the representations of the 
functions f(13), g(~), N~([3) and A~r([3) and the asymptotic form A*r(~) using formulae (5.14), (5.17), 
(5.26) and (5.28).-~ On applying it and, at the same time, taking account of the synthesizing friction law 
qT(P) (5.6) in formula F(_p) (5.25),_we reduce the expanded system of integral equations (5.22), (5.23) 
for the transforms fl(13),f2([3) andg2([3) (5.15) to the following system of three singular integral equations 
(SIE) with Cauchy kernels for functions of the real variable q0j(x) (j = 1, 2, 3) for the initial mixed problem 
of a moving crack 

t NIKISHIN, V. S., The correct formulation and numerical solution of fundamental and mixed problems in the theory of elasticity 
for multilayer and continuously inhomogeneous media. Doctorate Dissertation, 01.01.07, Vychisl. Tsentr, Akad Nauk SSSR, 
Moscow, 1982. 
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H e r e  

o (o 

tPl(t)d t Apq [ (x,t)q)l(t)dt+ Awp 12q)l(x) AwqlE~X I ~ - x  + g l l  

--07 --0~ 0 

I 
2Apq ~ Klz(X, t)~p2(t) + K13(x, t)%(t) dt = 2Apq(Qx2 + C1), + 

7% J [ 0 1~ 
o ~]t- O~ (x 

-tx ° <_ x <_ tx ° 

~ ~  i 2Apq C2x Awpl2(P2(x) - tP3(t)dt + Z2(tPl , ~2, q)3; x)  = 
t - x ~ J x  2 0 2 '  

(xO 

o 
< x ~ l  

1 

Auq 12(p3(X) + Awql2 1 qJ2(t) dt + X3(tPl' q)2' (D3; x)  = 
1~ t - x  

t~ ° 

2Apq D 2 (0 < x < 1 
/1; JX  2 _ (/,02' 

o 

Zj(%, q~2, %; x) = 2Apq(f  Kjl(x, t)cpl(t)dt + 
° 

+ ~ Kj2(x't)cP2(t)+KJ3-(x'f)%(t)dtl 
~o ,/(~_ o)(~_ o) )' j = 2 , 3  

Kll = Gooll-ktXGloll, K12 = Awftl]l(X,t)+Goll2-~XtGlol2 

KI3 = Awg] ~,f~+ 

K21 = AwfXTIl (x, t) + xGoo21, 

K3j --- A , f / ~ ° +  x + Glo31, 

t + GOl13 - ~x(AugXl]l(X, t) + Gl113 ) 

K22 = xtGo022 + AwfM22, K23 = xGo123 + AwgM23 

K32 = tGlo32+AugM32 , K33 = Glla3+AugM33 

Gkmj. = IbkmjnSkj(X, ~)Smn(t, ~)d[~; 

o 

booll = boo21 = b0022 = boll2 = Awf(~ ), 

bloll  = blo12 = b1031 = b1032 = Auf(~J ), 

Sol(X, ~) = cos(xl3), 

k,m = 0,1; j ,n  = 1,2,3 

boll3 = b0123 = Awg(~ ) 

bi l l3  = b1133 = Aug(~ ) 

Sl l (X , l~) = s in(x[$)  

(5.29) 

(5.30) 

(5.31) 

(5.32) 

/-~o x Jl(9~)_ 

~ / x +  (o 

~°J1  ( (z°~)  ~ . 0  ~ ( o B ) X  j 
: :  2,3 

S + ~  ° o , /x~-o ~ 

2mjj(x, t) rl2(x, t) 
Mjj = rcTI2(x, t) '  J = 2, 3; M23 - t_x--TI3(x ,  t), M32 = 

q2(x, t) 
- - q 3 ( t ,  x) t--x 

(5.33) 
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m22 - 2(x-~t2)(~TI4(x)-}ll4(t)), 
0 

m33 = -- (Z + - -  
1 

2 ( x  2 _  t2) (xrl4(x) - tT14(t)) 

/0¢02 -- X 2 + 
r l l ( x , t  ) - t2 x 2 4 ( x ° + t  ' rl2(x'l) ,](x+(z°)(t+o~ °) 

X 2 -- (X02 
n3(x,t) = t+X x2_C? 2 

1 0 
2' 114(X , t) = ( x 2 - a ° 2 ) l n X + a  0 

X--0~ 

Note that the functions Mjj(x, t) (5.33), which are defined in the square s ° _< x t  < 1, have removable 
mobile singularities on the diagonal t = x. The values of these functions when t = x are assumed to be 
equal to their limit values when t -2_ x, whichare determined by l'H6pital's rule. 

The unknown transforms fffl3), f2(13) and g2(~3) (5.15) are expressed in terms of the functions q~j(x) 
(j = 1, 2, 3), which satisfy the system of SIE (5.29)-(5.31), using the formulae 

(Z ° 

i1(1) = S%(x)cos(xI)dx, 
0 

= f (D3(x)SI2(X' ~)dx 
g 2 ( ~ )  ~0 

1 

(5.34) 

It follows automatically from the theo_ry of an identity transformation of the system of equations (5.22), 
(5.23) for the transformsy(~3) = fff[3) + f2(f3) and g(~) = g2([3) (5.15) into the system of SIE (5.29)-(5.31) 
that the transforms f([3) and g(f3), when account is taken of formulae (5.34), turns all Eqs (5.22) and 
(5.23) and the initial system (5.19)-(5.21) into identities, with the possible exception of Eqs (5.21). During 
the transformation process, these last equations are differentiated with respect to 9 and are therefore 
subject to verification by substituting the transformsfffl3), f2(13) and g2([3) (5.34) into them. Verification 
showed that Eqs (5.21) are only satisfied subject to the additional conditions 

o 1 1 

f q)l(X)dx = 0, I Xq02(X) dx = O, !o q)3(x) dx : 0 
/ 2 02 dX2 _ 002 

0 c~0a/X - 0~ 

(5.35) 

from which the arbitrary constants C~, C2 and D 2 on the right-hand side of the system if SIE (5.29)-(5.31) 
are determined. 

In order to satisfy conditions (5.35), we will seek a solution of the system of SIE (5.29)-(5.31) in the 
form 

q)j(X) = q0jl(X ) + CI(Dj2(x) + C2~j3(x ) + D2(Dj4(X), j = 1, 2, 3 (5.36) 

where q~jn(x) (n = 1, 2, 3, 4) are particular solutions of the system when account is taken of the following 
equalities on its right-hand side respectively: (1) C1 = C2 = D2 = 0, (2) Q = 0, C1 = 1, C2 = D2 = 0, 
(3) Q = 0, C 2 = 1, C I = D 2 = 0, (4) Q = 0, D 2 = 1, C1 = C2 = 0. 

Apart from the constants C1, C2 and D2 which have been determined above, there is also a theoretically 
indeterminate constant Q > 0 on the right-hand side of the system of SIE (5.29)-(5.31), which is the 
magnitude of the tangential force directed towards the motion of the crack, which depends on the 
strength of the bonding (adhesion) of the surfaces of the different layers. However, the structure of 
the system of SIE (5.29)-(5.31) enables us to construct a solution in the case of an arbitrary constant 
Q > 0 in the form 

0 (Dj(x) = Qcpj(x), j = 1, 2, 3 (5.37) 

where q~(x) (j = 1, 2, 3) is the particular solution when Q = 1. In passing, the hypothetical case when 
Q = 0 should be noted. In this case, the system of SIE (5.29)-(5.31) has only a trivial solution 
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tp°(x) - 0 (j = 1, 2, 3) which is evidenced of the degeneration of the initial problem and thereby underlines 
the special role of the force Q in the synthesizing friction law (5.6). 

Next, we shall briefly describe a method for constructing a solution of the SIE (5.29)-(5.31) and 
investigate its singularities. The process begins with the construction and investigation of the singularities 
of the solution of the characteristic system of SIE (5.29)-(5.31) in the complex form 

n ° 

Awp 12tpl(x) - i A w ~ i g x  1%(t----2)dtt-x = 2Apq(Qx21t + C1)' -a°  < x <_ t~ ° (5.38) 

1 

B tp(t)d t Atp(x) + ~ I t - x  = Apqf(X), 
o 

or° < x <  1 (5.39) 

Here  

A = AwpI2 0 , B = 0 -iAupI2 , ~(x) = ~2(x) 

0 Auql2 iAwql2 0 ~3(x) 

f ( x )  = fz(x)  f j (x )  = f~(x) 0 C2x 
f2(x) , g x,~x__~ 0, j = 2 , 3 ;  f z ( x ) -  x~f~++ 0, 

f~(x) = - -  
D2 

x ~ +  0 

(5.40) 

Equations (5.38) and (5.39) are mutually independent, possess zero indices and have unique closed 
analytical solutions, which are constructed using well-known theory [3, 4]. At the same time, Eq. (5.39), 
(5.40) in matrix form reduces to a Riemann-Hilbert  problem. During the process of constructing the 
closed analytical solutions of the characteristic SIE (5.38) and (5.39), (5.40), their singularities at the 
ends of the intervals of integrationx = a0 andx = 1 manifest themselves and are separated out in explicit 
form 

tPl(X) - c+ln(t~ ° - x ) ,  (Pl(X) - c-(ct ° - x )  -° when 

tp~.(x)-c ln(1-x) ,  j = 2,3 when x - - - ) l - 0  

x---~ a ° _  0 
(5.41) 

The superscripts on the functions q01(x) correspond to the signs of the ratio { = Awq12/Awp12 = ± I ~[ 
over the range of variation of the mechanical characteristics of the problem, the constant 0 is defined 
by formula (7.7) in Appendix 1 and the actual values of the constants c -+ and c are no longer required. 

The closed analytical solution of the characteristic SIE (5.38), (5.3) is used to regularize the overall 
system of SIE (5.29)-(5.31) using the Carleman-Vekua method. Here, the regular kernels and the free 

0 terms at the ends x = o~, 1 preserve the root singularities and acquire new singularities (5.41) which, 
after they have been separated out, are removed together with root singularities by means of identity 
transformations. As a result of regularization, the system of SIE (5.29)-(5.31) reduces to a uniquely 
solvable system of three regular Fredholm integral equations of the second and third kind with 
continuous kernels in the functions q~j(x) (j = 1, 2, 3) which are connected with the initial functions 
tpj(x) (j = 1, 2, 3) if the initial system of SIE by the relations 

+ + 0 - 0 -0 + ~. 
tpl = qblln(o~ - x ) ,  % = ~ ( t x  - x )  , tp~ = ~ l n ( 1 - x ) ,  j = 2,3 (5.42) 

Substituting the_transfor_m/S(~), expressed using formulae (5.16), (5.17) and (5.14) in terms of the 
transforms f1([3), f2([~) and g2([3) (5.34), into the Hankel integral for ~Yz(P) = P(P) (3.2), we carry out a 
series of successive transformations of the double integrals and, as a result, when account is taken of 
relations (5.42), we determine the leading terms of the normal stresses %(p) on the contours of the 
cavity a0 < P < 1 

+ 0 + + 0 0 
(Yz(P) = A u f t ~ l ( O ~  ) ~ I ( P ,  (10)+Augdi~3(O~ )73( ~ ) 

/ -~02 _ p2 
+ O(1) when p ---) 0 _  0 (5.43) 
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where 

%(0)- - - A . g q ~ ( 1 ) l n l l  - pl  

/p2 _ 1 
+ O(1) when p ---> 1 + 0 (5.44) 

71 = In(0~02-p2), Y1 - 

o (x 

0 < C -  = f dt_ 
(0 02-- t2)O < 

0 

C - (  1 - 2 0 )  
2 0 '  20(0~02- _ p ) 

1 0 
~3 ---- ~ a  ln(1-~x °) 

(5.45) 

Taking account of the inequality In ] 1 - p ] < 0, we conclude from the limiting formulae (5.43)-(5.45) 
that the criteria for the existence of a cavity a ° < p < i for the two forms of the solution reduce to the 
following conditions (see Section 1) 

• 21(a°) + dP~(a °) = 0, A,g~b3(1) > 0 (5.46) 

under which the normal stresses oz(9) on the internal contour p = (z ° are bounded and the stresses on 
the contour of the tip of the crack p = 1 are tensile stresses (of positive sign) and they undergo an 
infinite discontinuity 6z(1) = +oo. By analysing formulae (5.27), (3.12), (3.13) and (4.4), it can be shown 
that the quantity Aus, as a function of the velocity c, changes sign at the point of resonance c = CR of 
the Rayleigh waves in the case when c21 < c22 or at the point c = Cs of the Stoneley waves in the case 
when c22 < c21. In both cases, we have Aug < 0 in the preresonance velocity interval 0 < c < min(cR, 
Cs) and Aug > 0 in the post-resonance velocity interval min(cR, Cs) < c < min(c21, c22). In the case of 
the resonance of Rayleigh or Stoneley waves when c ~ min(cR 7- 0, Cs -7- 0), we have Aug ~ 7- oo. 

It should be explained that the transition to resonance of Rayleigh or Stoneley waves when c ~ c,  
(~ = r, s) is accompanied by a secular increase in the amplitudeA of the oscillation of all of the stresses 
and displacements according to the hyperbolic law A = K/(c - %) (K = const) and, when c = c,, it is 
concluded with a catastrophic global rupture during which all of the stresses and displacements become 
infinite with an instantaneous change of sign. 

The magnitude of the internal radius of the cavity a ° is determined numerically on the basis of the 
criterion (5.46) and the parameters of problem (1.1), (1.2), corresponding to this case, are chosen. 

In order to substantiate the correctness of the solution constructed above, apart from satisfying the 
criterion (5.46), it is required that the continuous axial stress 6z(P) on the contacting sides of the crack 
should be compressive stresses (of negative sign) %(0) < 0 (0 _ p < ~z°). The latter condition, which 
must indicate that there are no intermediate cavities (Section 1), can only be verified numerically. 

6. THE P R O B L E M  OF THE M O T I O N  OF A T R A N S V E R S E  S H E A R  
C R A C K  W I T H O U T  A CAVITY 

The problem of the motion of a transverse shear crack without a cavity is considered as a special case 
of the problem from Section 5 in which 

0 
a -= 1, f2(~) = g 2 ( ~ )  -- 0, qo2(x ) ~ qo3(x ) --- 0 (6.1) 

Below, in this section when reference is made to the formulae in Section 5, the special case of these 
formulae which corresponds to conditions (6.1) being satisfied should always be kept in mind. 

The problem_being considered is reduced to the SIE (5.29) in the function %(x) in the interval [0, 1]. 
The transformfl(13 ) is expressed in terms of %(x) using formula (5.34). The constant C1 is determined 
from the additional condition (5.35) for %(x). In order to satisfy this condition, we will seek a solution 
of the SIE (5.29) in the form 

q) l (x )  = q)l l (X) + Clq)12(x)  (6.2) 

where %j(x) (j = 1, 2) are the particular solutions of the SIE (5.29) when (1) C1 = 0, and (2) Q = 0, 
C1 = i respectively. On substituting the function %(x) into equality (5.5), we obtain an equation in Cj 
from which we find 
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C l : Iq)ll(x)dx (~12(X) dx 

0 "0 / 

(6.3) 

The method of constructing the solution of the SIE (5.29) and investigating its singularities has been 
described in detail in Section 5. The closed solution of the characteristic SIE (5.38) is constructed in 
two forms q0~(x), which have the singularities (5.41) when x ~ l. The complete SIE (5.29), as a result 
of regularization, reduces to a Fredholm integral equation of the second kind in two forms in the 
continuous functions O~(x), which are related to the solutions q0~(x) of the initial SIE (5.29) using 
formulae (5.42). 

The leading terms of the stresses %(9) on the contour of the crack tip p = 1 for the two forms of 
the solution are determined using formula (5.44) 

+ + 

(~z(P) = A"fOT(1)TT(P' 1) 

J l  - 132 
+ O(1 ) when p --~ 1 - 0 (6.4) 

The functions 7~(P, 1) are determined using formula (5.45). 
Taking the equality 7~- = In(1 - p2) < 0 into account, we conclude from the limiting formula (6.4) 

that the necessary criterion of the correctness of the solution which has been constructed reduces to 
the conditions 

A.fO~(1)  > O, A . :OI(1)  < 0 (6.5) 

C~z(p)<0, 0 _ < p < l  (6.6) 

The parameters of problem (1.1), (1.2) are selected from conditions (6.5), and condition (6.6) must 
numerically confirm that the stresses ~z(P) on the sides of the crack 0 _ P < i are compressive stresses 
(Section 1). 

As a function of c, the sign of Auf(c), unlike the sign of Aug(C) in Section 5, depends very much on 
the magnitude of the parameter Z (1.1) compared with the magnitude of the ratio A12(c 0) = 
Awql(C°)/Awq2(C°), where c o is an arbitrarily selected preresonance velocity 0 < c o < min(cR, Cs). In the 
case when c21 < c22: (1) when )~ > A12(c0) (0 < c o < CR), we have Auf(c) > 0 (0 < c < c°), 
Auf(c) < 0 (c o < c < CR) and (2) when Z < A12(c°), we haveAuf(c)  < 0 (0 < c < CR). In the case when 
c22 < c2a: (1) when Z > A12(c °) (0 < c o < Cs), we have Auf(c) > 0 (0 < c < Cs) and (2) when Z < Ai2(c°), 
we have Auf(c) < 0 (0 < c < c°),Auf(C) > 0 (c o < c < Cs). In the case of resonance A~f(c) ---> -Too when 
c --+ CR -~ 0 and A, f (c )  = _+ ~, when c ~ Cs ~- O. 

The resonance of Rayleigh and Stoneley waves in this solution has exactly the same form as in the 
solution of the problem in Section 5. 

7. A P P E N D I X  1. THE CLOSED S O L U T I O N  OF THE 
C H A R A C T E R I S T I C  SYSTEM OF SIE (5 .38 ) - (5 .40 )  

We will now construct the solution of Eq. (5.38). Initially, in order to simplify the calculations, we will 
change from Eq. (5.38) to the equivalent equation 

c~ ° 

b(x) (Pl(t)dt = f l (x) ,  - a ° < x < o ~  ° 
a(x)(pl(x) + rt-----~ I t-----'~ (7.1) 

where 

a(x)  Awpl2 b ( x ) -  iAwql2~X ~ c l ( X ) _  2Apq 
- A ( x ) '  A (x )  ' l~A(x) (Qx2 + c l )  

2 2 
A 2 ( X )  = Awpl2 + (Awql2~X) , a2(x)- b2(x) = 1 

(7.2) 
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We will seek the solution of SIE (7.1) in the following form [3] 

0 

_ fl(t)dt (plh(X) = a(x)]fl(x) b(x)Z(x)xt f Z ~ ) + b ( x ) Z ( x ) P ~  l(X) 
_ 0  

(7.3) 

The solution of the characteristic SIE (7.1) is denote by q)lh(X), and Z(x) is the canonical function of 
this equation 

0 ~.2 Z(x) = (x + cz°)X~(x - (z)  exp(F(x)) 

a° ; (t x _ a(x) -b(x)  (7.4) = l_f_ I 1 G )dr, G(x) a (x )+b(x)  F(x) 2rci - 
0 

- I X  

)~1 and L2 are integers, which satisfy the conditions 

- l < ( z k + ) L k < l ,  k = 1,2 

cz I = Re( lnG(-cz°)']'2rti J ~2 = R-(lnG(°~°)'~e~. ~7 .  ) 

(7.5) 

~c = -(L~ + L2) is the index of SIE (7.1). P~_ 1 is a polynomial of degree ~c - i with arbitrary coefficients 
and, when v; < 0, it is necessary to put PK- l(x) : 0. 

Using formula (7.4) and taking account of relation (7.2), we obtain 

1 + i{gx ~ = Awql2 Ia(x)l -- 1, lnG(x) = 2iarctg(~tx) (7.6) 
G(x) = 1 - i~gx' Awpl2' 

By analysing the quantities Aw 12 = Awql - ~Awq2 and Awp12 = -(Awp 1 + )~Awp2) as functions of 
c < min(c12, C22), it can be established that their ratio ~ changes sign over the range of variation of the 
elastic and velocity characteristics of the two-layer half-space. Consequently, it is necessary to seek two 
various of the solution of Eq. (7.1): when ~ > 0 and when ~ < 0. For both versions, the solutions ~P~h(x) 
(7.3), which are given the superscripts + respectively, we find using formulae (7.4)-(7.6) that 

0 
= 1 

F(x) = +f'(x), f '(x) ~ I arctg(l{Igt)t~- x 
_(X 0 

1 (7.7) (Z 1 = 0~ 2 = + 0 ,  0 = larctg(l~lg~0), 0 < 0 <  2 

2~1 = ~'2 = 0 ,  ~ = - ( ~ 1  + ~ 2 )  = 0 

In both cases when { > 0 and ~ < 0, the characteristic SIE (7.1) has zero index and its closed versions 
of the solution (P~h(x) are determined using formula (7.3), taking account of the relations and the identity 
P~_ l(x) -= 0. We have 

o + ~  c~ 
+ Awpl2; " " Awql2~txexp(-F(x))  I f l ( t ) exp(gz f ' ( t ) )d t  

(Plh(X) - - ~ - ~ f I ( X )  + ~m(x)  l ~ - x  
o 

-0~ 

(7.8) 

We next investigate and separate out in an explicit form the singularities of the solutions (Plh(X) (7.8) 
at the ends 0 _ c~ of the interval of integration. For this purpose, we introduce the continuous and bounded 
functions in the interval -c~ ° < x < c~ ° 

(3( ° 

c~(x) = larctg(J~hax), y ( x ) =  I a ( t ) - ~  ( x ) d t t  (7.9) 
_0~ 0 
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into the treatment and, taking into account the functions 

0 

+['(x) = +y(x) + ~ ( x ) l n % - X  
O~ + x  

which are expressed in terms of them, we obtain the representation of the canonical functions 

Z+-(x) = exp(+['(x)) = exp(+T(x))\o ~ +xJ (7.10) 

Taking into account the continuity of the functions a(x) and 7(x) (7.9), we establish that the function 
+ 0 0 Z (x) (7.10) is continuous in the interval - s  _< x < s and vanishes at its ends: 

Z+(+cx °) = 0 (7.11) 

The function Z-(x) is continuous in the interval _~0 < x < s °, and, at its ends whenx ~ _+s °, it undergoes 
infinite discontinuities according to the law 

0 -0 Z-(x) = e x p ( - f ' ( x ) ) - ~ ( s  ~:x) , ~ = exp(-7(o~°)) (7.12) 

We now separate out the singularities of the closed solutions q~h(x) (7.8) of the characteristic SIE 
(7.1). In the case of q~h(X), we represent the integral in (7.8) in the form 

f rO ~ 0~0 ~ ~ 

I f l( t)exp(-f ' ( t))dt  : J f , ( t ) - f , (X)exp(_f . ( t ) )d t+ 
t - x  t 

_OL 0 --(X 0 

[ oo 
0 _ x exp (f'(t)) - exp(f'(X))exp(_f.(t))d~ 

+ ?1 (x ) ex p ( - f ' ( x ) ) l n So  I t - x  
(X + X _cxo 

(7.13) 

and, in the case of qOlh(X), in the form 

0~0 ~ 0 ~ 

I f l( t)exp(f '( t))dt = I fl(t)exp(f'(t))-~fl(x)exp(f~(X))dt+ 
t - x  t - x  

--IX 0 - -07  

o 
+ f l  (x)exp (f '(x))In a b - x 

O~ + x  
(7.14) 

Taking into account the fact that the functionsfl(X) (7.2) and s(x) (7.9) have first and second derivatives 
in the interval -c~ ° < x _< s °, the convergence of the parametric integrals on the right-hand sides of Eqs. 

0 0 (7.13) and (7.14) to continuous functions ofx over the whole of the interval - s  _ x _< s can be proved. 
On the basis of this assertion and using formulae (7.13) and (7.14), we find the singularities of the two 
versions of the solution Cp~h(X ) (7.8) of SIE (7.1) at the ends of the interval of integration when 
x ---) t - S  ° 

+ + 0 ( 7 . 1 5 )  q~lh(X) - Nlh ln(s  T- x), q)-lh(X) - N;h(S ° ~i x) -° 

The constants N~h, when the expression for e (7.12) is taken into account, are given by the formulae 

(x ° 

+ Awql2[.tS°fl(s°) N; h = { ~ f l ( t ) e x p ( f ' ( t ) ) - f l ( s ° ) e x p ( f ' ( s ° ) ! d  t 
Nlh = ~A(aO) ' _o t -  S ° 

(7.16) 
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y, 

l* 

0 x o~ ° l 1 

Fig. 2 

We will now construct the closed analytical solution of the characteristic matrix system of SIE (5.39). 
Initially, we close the contour of integration of the SIE (5.39) l = (s  ° < x < 1) with a smooth arc l' and 
change to an equivalent SIE on the closed contour L = l + l' (Fig. 2) 

f4q)(X) + B---~CP(t)dt = Apq?(X)  
gi  t - x  

L 

where the (4 x 4) square matrices d and/)  and the (4 x 1) column matrixf(x) have the form 

= A 0 , ~ = B 0 , f ( x )  = f ( x )  
O E  O 0  0 

(7.17) 

(7.18) 

where E is the identity matrix and O is a second-order zero matrix or a zero column matrix with two 
elements in the case off(x) .  

The closed analytical solution of SIE (7.17), (7.18) also holds for the initial SIE (5.39), and, using a 
Cauchy-type integral in the complex plane z = x + iy, we construct 

• (z) = 1-]-fq~(t)dt (7.19) 
2rci t -  z 

L 

The contour L = l + l' subdivides the z plane into two domains Z + and Z-, which are respectively to 
the left and right of the direction of its circuit shown by the arrow in Fig. 2. The Sokhotskii-Plemelj 
formulae hold for the boundary values of the integral (7.19) 

1 + 1.~._ig)(t)d t 
• +(x) = + ~ p ( x )  2rti t - x  

L 

from which the equalities 

qo(x) = ~+(x) - • (x), l ~ ( p ( t ) d t  = qb+(x) + ~-(x)  (7.20) 
rti t - x  

L 

follow. 
Substitution of expressions (7.20) into SIE (7.17) reduces it to a Riemann-Hilbert inhomogeneous 

conjugation problem 

q~+(x) = G~-(x)  + ~(x) (7.21) 

where 

= 

N _  1 

g (x )  = S A p q f ( X )  

oES° , D O  , 0 E  S = A + B ,  D = A - B  
(7.22) 
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Using formulae (5.40), (7.18) and (7:22) for the matrices A and B, A and/) and S and/ )  respectively, 
it is easy to verify that the equality detG = detS-1D = 1 holds, from Which it follows that the conjugation 
problem (7.21) has a zero index ~ [3, 4]: 

i~ = l [a rgde tGlL = 0 (7.23) 

In the case of a constant matrix G, the homogeneous conjugation problem is solved in an explicit 
form using the canonical matrix 

{G when ze  Z +, ~; EO 

X(z)  = E when z e Z -  = OE 
(7.24) 

Consequently, q~+ = X + = G, O- = X- =/~ and, therefore 

x + = ~ x - ,  ~ = x + [ x - ]  -~ (7.25) 

The solution of the inhomogeneous conjugation problem (7.21), taking account of the zero index 
K = 0 (7.23) is given by the following Cauchy-type integral [3, 4] 

+ --IN x-l.(z) = !~[xJ__~(t)dt 
2rri t -  z 

L 

(7.26) 

On applying the Sokhotskii-Plemelj boundary formulae to the integral (7.26), by analogy with equalities 
(7.20) we establish the relations 

+ FI~ 
[X ] g(z)  = [X+]-lq~+(x)- [X-l-l~-(x) 

+ -1 
l-if[X t]~ (t)df = [X+]-I(I )+(x) -t-[X-]-I(X)-(x) 

L 

from which we find 

I + -1~ 
• = x -+ 

+ 2rci L t - x J 
(7.27) 

Using the first formula of (7.20 and taking account of formulae (7.27) and the equalities X + = 
= S-D,  X -  = E,  g(x)  -- Apq ~ - l f  (x), we find the required function q0(x) of the characteristic SIE (7.17) 

_- ,. + e aLs i:(.)e. 
" L - -  g l  L t - -  X 

(7.28) 

Then, on taking account of the equality 0-1 = [~-l/ff)]-i = /~-1~, 0-1~-1 = D-lg~-i =/)-1 and the 
formulae 

~-1 
S 

b-l 

S -1 0 , 

0 E 

D -1 0 , 

0 E 

S-1 = 1 Auql2 iAupl2 

-iAwql2 Awpl2 

D-1 = 1 Auql2 -iAup12 
%q iAwq12 Awpl2 
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we represent q0(x) (7.28) in the following final form 

: 74,(f(xl + D* I]qt) a, 
g t - x  

L 
(7.29) 

where 

,4, = ~(S-l+/~l-')= O * 0 , A ,  = Auql2 0 
E 0 AwplZ 

• ,  = N I ( ~ - I _ D - 1  ) = B ,  0 , B ,  = 0 Aupl2 
z~ 0 0 -Awql2 0 

(7.30) 

It is easily seen that the solution of the initial characteristic SIE (5.39) is identical to the solution of 
SIE (7.17) on the contour I = (~0 < x ___ 1) and is given by formula (7.29): 

1 

(p(x) = A , f ( x )  +-~ I f(t)dtt-x 
o 

(7.31) 

SIE (7.17) on the contour l' has the obvious trivial solution q0(x) - 0 which is no longer required. 
Next, taking account of formula (5.40) for ~p(x) andf(x), we represent the matrix solution (7.31) for 

the characteristic SIE (5.39) in the expanded form 

1 

Aupl2 f f 3(t) dt ' _ Awq 12 f f 2(t) dt 
(P2h(x) = Auql2f2(x)+ 1~ J t - X  (P3h(X)=Awpl2f3(x) n J t - x  

o o 

(7.32) 

We substitute the representations of the functions 3~(x) (j = 2, 3) into formulae (7.32), identically 
transform the integrals 

i f~(t)dt _ 
so t~-a°(t- x) 

I 

f~(x> + fT(x) I dt 
a0 ~ a°(t  - x)' co t~-~O(t-x) 

(7.33) 

1 

S dt d t -  1 oln 1 - x  

and separate from the singularities at the ends of the integration interval 

' f~(t)dt _ ln(1-x)(  f fx -~  ° -~o, , / 
!oJt-o~°(t-x) ~ (1~ f'--D sMx)+ Y(x)fT(x) 

In ( f f l - -  o~ ° + f ix  - o~ °) y(x) = 1 - 2 
In ( 1 - x )  

(7.34) 

0 0 0 All of the functions y(x), fj(x), f)(x) (j = 2, 3) are continuous in the interval c~ _< x _< 1. 
The solution ~Pjh(X) (j = 2, 3) (7.23), taking account offj(x) (5.40) and the quality (7.34), is written 

as follows with the singularities separated out in explicit form 

21n(1--x)~jh(X), j = 2,3, ~0_<X<I 
%h(x) -- n 
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~2h(X) = A"q121n(l -x---~) + y(x)f~(x)4 1-~(~2-~j3tx)) (7.35) 

fT(x) Aw__q12(y(x)fT(x) + ~ix-a° -:o, ,~ 
~3h(x) = Awpl21n(1-x) rc t, l'~(f'-'-~ J2tx)) 

The functions @jh(X) (J' = 2, 3) are continuous over the whole interval o~ ° ___ x ___ 1. 

8. A P P E N D I X  2. R E G U L A R I Z A T I O N  OF T H E  S Y S T E M  OF 
SIE ( 5 . 2 9 ) - ( 5 . 3 1 )  

We will first regularize SIE (5.29) using the closed solution (7.8) of the characteristic SIE (7.1). We 
transfer all the regular terms to the right-hand side and apply formula (7.8) to them having replaced t 
by z in this formula, as well as to the function f l(x). Next, we change the order of integration in the 
double integrals and transfer all the terms containing the unknown functions q)j(x) (j = 1, 2, 3) to the 
left-hand side. As a result, we obtain the following regularized equations for the two versions of the 
solution of SIE (5.29) 

o c( 3 1 _+ 
(PI(x) Apq r + + 2Apq ~ f Ml j (X ,  t )  "+(t)dt + + MII(X' t)(pT(t)dt+ rc z_~ j ~ wj = q)lh(x) It, a 

o j = 2 a 0  4t-O~ 
--C£ 

(8.1) 

O~ 0 ~ 

+ Awpl2Klj(X,  t) Awql2l.tx - Klj('C, 
MI j  - A ( x )  + - - - ~ e x p ( + F ( x ) )  f t)exp(~-F('C))dT''c-x 

--07 

j = 1, 2, 3 (8.2) 

It is easy to verify that the functions q)~h(X) and the kernels M~j(x, t) (j = 1, 2, 3) (8.2) are even in the 
variable x and that the kernels M~(x, t) are also even in the variable t. In this case, the required functions 
q0~(x) in the two versions of Eq. (8.1) are even, and, therefore, it is possible and advisable to represent 
them in the following form 

<(x)+ 2 ' = (8.3) 

Comparing the expressions (P~h(X) (7.8) and M~j(x, t) (8.2) and taking account of the differentiability 
of the functions K]j(x, t) (j = 1, 2, 3) with respect to the variable x, it can be seen that the kernels 
M~/(x, t) (~ = 1, 2, 3) and the free terms (P~h(x) of Eqs (8.3) have the same singularities (7.15) at the 
end x = (z u. 

In fact, by representing the integrals on the right-hand side of equality (8.2) using formulae (7.13) 
and (7.14) and, at the same time, replacing f l (x)  by Klj(X, t), we find the leading terms of the kernels 
M~.(x, t) (j = 1, 2, 3) whenx ~ c~ ° using the technique described above 

+ + - - 0 -0  
MIj(X,  t) - N l j ( t ) l n ( o ~ ° -  x) ,  Ml j (X ,  t) - Nl j ( t ) (o~ - x)  (8.4) 

where the functions N~j(t), when account is taken of ~ (7.12), are given by the following formula 

o o 
NTj( t )  = Awql2gOt Klj(O~ , t) 

rcA(~ °) 
( /0  

U l j ( t )  = c ~ Klj('~ , t ) e x p ( f ' ( ~ ) )  - K l o ( ~ °  , t ) e x p ( F ( ( x ° ) ) d ,  t 

" ~ - ( 2  
_ ( 0  

(8.5) 
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In order to remove the logarithmic singularities (7.15) and (8.4) in Eq. (8.3) for the functions q~-(x), 
(j = 1, 2, 3), we introduce the new unknown functions 

• ; (x ) -  %(x) .;(x)_ 0 ' ln-O -- x)'  j = 2, 3 (8.6) 
ln(¢x - x )  

and obtain for them the integral equation 

c( ° 

3 1 ~ +  

+ j,~ f Mlj(X,t) ln(1 - t )~; ( t )d t  = ~ h ( X )  ' 0 < x < O~ ° (8.7) 

where M~j(x, t) = M~j(x, t)/ln((~0 - t) (j = 1, 2, 3), qa~h(x) = (p~h(x)/ln(ao - t) are continuous functions 
in the corresponding intervals of integration and, when x = ~o, we have 

~+  0 MU(O~ , t) + + 0 + = N l j ( t ) ,  j = 1, 2, 3, ( I ) lh (O~)  = N l h  ( 8 . 8 )  

We remove the root singularity in the second and third integrals of Eq. (8.7) by changing the variable 
of integration using the formulae 

0 2 
t 2 ( t )  = / t  - 5 0, t ( t 2 )  = (Z + 12 (8.9) 

As a result, we arrive at the integral equation 

O~(x) + hTl(x,  t ) ln(~°-t)O+l(t)dt+ 

I + +2 Z ~'I+u.(x, t) ln(1-t( t2))~;.( t2)dt2 = ~lh(X), 
j = 2  0 

0 
0 N x ~  (8.1o) 

where the functions 

+ 

~4Tj,(x,t  ) = ~/llj(X,t(t2) ), j = 1,2,3, ~ ; , ( t2 )  = ~j(t( t2)  ), j = 2,3 

are labelled with an asterisk. 
We remove the logarithmic singularities in the integrals of Eq. (8.10) by representing them in the 

following forms 

0 0 

f ~41 ' (x ' t ) ln (~° - t )c~( t )d t  = I ~ l ; ' (x ' t ) ln(°~°- t ) (*+l( t ) -*T((x°))dt+ 
0 0 

no o 

+~l(o~ ) (Mt l (X , t ) -Ml l (X ,a° ) ) l n (o~° - t )d t+Ml l (X ,a° )  ln(o~°-t)dt 
\ 0  0 

(8.11) 

o 

I ln(o¢ - t)dt = -c~°( 1 - lncx °) 
0 
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J1 - { 7 ,  ° 

I ~l+lj*(x' tz)ln(t - t(t2))~;*(t2)dt2 = 
0 

= I ~l+lj*(x't2)ln(1-t(t2))(rI};*(t2)-{I};*(dl-°{°))dt+ 
0 

c{ ° 

(Ml j*  (x, t2) - /~ /~ j ,  (x, ~/1 - 0{ O) )ln { 1 - t( t2))dt 2 + (8.12) 

l•T•--• ° 

+ &l~j,(x, d l -  o~ °) I 
0 

J1 - a ° 

I ln(1-t(tz))dt2 = 
0 

In (1 - t(t2))dt21 

I ln ( l - ° {° - t22)d t2=-2~/ l - °~° ( l - ln (2J l - °~° ) )  
0 

To remove the power singularity (7.15) and the logarithmic singularity (7.35) in Eq. (8.3) for the 
functions {p~(x) (j = 1, 2, 3), we introduce the new unknown functions 

~ ; ( x )  , 
{I}T(x ) = ({~°-x)°{pT(x),  {I}j(x) - lnTT---x) J = 2 ,3  (8.13) 

and obtain the following integral equation for them 

~ p . ~ l f  - -MII(X, t) 3 1 - -  t) ln(1 -t)rb;(t)d t . . . . .  x-, t Mu(x, 
~l(X) + , o ,o q~l{t)clt + 2., J 7 - - - b  = qbTh(X) 

( o~ - t )  j = 2 a o  d t - o~ 

0 O<x<o~ 

(8.14) 

For the continuous functions 

~-  - 0 0 
M l j ( X ,  t) = M l j ( X ,  t)((Z --X) , j = 1, 2, 3, ~Th(X) = { p ; h ( X ) ( o { O - x )  0 (8.15) 

in the corresponding domains in which they are defined when x = {x °, we have 

h-U({x °, t) = NTj(t), j = 1, 2, 3, {I}Th({X °) = NTh (8.16) 

We remove the root singularity in the second and third integrals of Eq. (8.14) by changing the variable 
of integration t using formulae (8.9), while the power singularity in the first integral is eliminated by 
changing the variable of integration t using the formulae 

t O1-0 1 -0 dt ~ - (o~ ° - t) f tl(t) J ,  o .0 1 - 0  ' 
0(a  - t )  

t(tl) = a ° - ( { x ° l - ° - ( 1 - 0 ) t l )  1/(1-0) (8.17) 

and, using the same formulae, we replace the variable x byxl. As a result, the integral equation becomes 
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(q ((x °) 

t~-l ,(Xl)+~-'~[ ! ~41l*(Xl, tl)tYiIl,(tl)dtl + 

3 ffl - c~ ° 

+2 E f *~lJ*(Xl' tz)ln(1 --t(t2)){I}-J *(t2)dl2 
j = 2  0 

= OTh,(Xl), 0<Xl<Xl(~° )  (8.18) 

where 

01 - 0  
t i ( c ¢ o )  _ 0{ l - 0 '  ( I ) T * ( X l )  ---- ( I ) T ( X ( X l ) ) '  O ; * ( X 2 )  ---- O ; ( X ( X 2 ) ) '  j = 2,3 

~ ~ _  ~ ~ _  
MII,(Xl, tl) = MII(X(Xl), t(tl) ), M-lj,(Xl, t2) = Mlj(X(Xl), t(t2)), j = 2, 3 

OTh.(x~) = O T h ( x ( x j ) )  

The second and third integrals in Eq. (8.18) are represented in the form of (8.12) withx replaced by 
x(xl). 

We now regularize SIE (5.30) and (5.31) and, using the closed solution (7.32), the characteristic system 
of SIE (5.40). We transfer all the regular terms of Eqs (5.30) and (5.31) to the right-hand side and apply 
formulae (7.32) (having replaced t by z in them) to the equations and the functionsfj(x) (j = 1, 2, 3). 
We then change the order of integration in the double integrals and transfer all the terms containing 
the unknown functions (pj(x) (j - 1, 2, 3) to the left-hand side. As a result, we obtain the following regular 
equations 

(l ° 

(~j(x) -1- 2 ~ U !lLX2 t~)o (~l(t)dt 
E o ~X-O~ 

3 t 
2 ~. f Mj,(x, t)(p,_(t) ct o 

+~z - ,  J 7------o o dt = tpjh(x), < x < 1  (8.19) 
,=2 o d ( x - o t ) ( t - ~ )  

where the kernels Mjn(X, t) (j = 2, 3; n = 1, 2, 3) are given by the formulae 

1 

M2n(x,t) = Auql2K2n(X,t)+Aupl2/x-O~°[ K 3 n ( ~ ' t - )  dl :  

1 

i 3  n ( X, t ) -- A wp l 2 U3 n ( x, t ) - ~ - ~  x~--~- ~O I K---2 n ( "C--'~ t2 d~ 
so f f ( z  - a ° ) ( ~  - x )  

(8.20) 

Using equality (7.34), we separate out the singularities at the ends of the interval of integration from 
the integrals in formulae (8.20) and represent them in the form 

I Kj,(x, t) ln(1 - x ) (  ,fix- (z ° 7~ , 
ao~f~-ao)~-'}ZZ x) dz = ~ ~ln--(l'--" x--) ̂ j ' t x '  t)+ y(x)Kjn(x, t) 

1 Ks . (~ ,  t) - K j . ( x ,  t) 
Kj,(x, t )  = j - - : : = o - - -  dz, j = 2,3; n = 1,2,3 

o ~ -  a )(~- x) 

(8.21) 

We now introduce the representations of the free terms ¢9jh(x) (7.35) and of the integrals (8.21) into 
Eqs (8.19), multiply them by ~xx - cz ° and divide them by ln(1 -x ) ,  and introduce the new unknown 
functions for both versions of the solution 

( I ) I (X)  = ( ~ l ( X )  ( I ) I (X)  = (0{ - - X )  q ) l ( X ) ,  = - - ( j  = 2 , 3 )  o ln(a - x )  ln(1 - x )  
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As a result, we obtain the following systems of integral equations for them 

0 e( 

i~+ o_ Mj1(x, t ) ln (a  t)O+l(t)dt+ 
2I 

0 

+ f~Is"(x-'t-)-ln(1-t)o~.(t)dt j 2,3; ° = % ( x / ,  = t~ ° < x < 1 (8.22) 

o 

n o ( o d  - t )  ° 

3 1 ~ _  
N" f Mj.(x, t)In(1 - t)oj(t)d t 

+n--~2~o ~ o  : Ojh(X)' j : 2,3; (Z ° < x < l  

where the kernels 21~t~(x, t) (j = 2, 3; n = 1, 2, 3) are given by the formulae 

~+ K2,(x, t)+ Aupl2(X,~ ] 
M2n(X,t) = auqlZln(l_x ) x ~lntl-x)  ~(2n(x't)+y(x)K2n(x't) 

- +  K3n(X,t) awql2 ( Jt-O~ 0 ~ "X t" ) 
M3.(x,t) = Awp121n(l_x ) x- (l~-l---x-) 3~t ,  )+Y(x)K3n(x,t) ) 

(8.23) 

(8.24) 

and, when x = 1, we have 

~ + A u p l 2 K 2 n (  ~ + = - A w q l 2 K 3 n (  M2n(1, t) = 1, t), M3.(1 t) 1, t) (8.25) 

In order to remove the root singularities in the two systems of equations (8.22) and (8.23), we replace 
the independent variable x and the variable of integration t in the interval [c~ °, 1] using formulae (8.9). 
In the first integral of system (8.23), we change to the variable of integration (8.17) and thereby remove 
the power singularity. As a result, the systems of equations (8.22) and (8.23) become 

2x20;  *(x2) + I/~/sl*(X2' t)ln(°~°-t)Ol(t)dt + 
0 

3 ~/1 - a  ° 

+ 2 2  I h4J+"*(x2't2)ln(1-t(t2))*~]*(t2)dt2=OJ h*(x2)' °<Xz-<'/1-c~° (8.26) 
n = 2  0 

tl(C#) 

2X2(I )7 ,  (X2) + J" / ~ ; 1 ,  (X2, ' l ) t J ~ l ,  ( t l ) d , l  + 

0 

3 1~-~ ° 

+ 2 ~z~ I 37/7~*(x2' te)ln(1 -t(t2))*7*(t2)dt2 = OJ h*(x2)' 
n = 2  0 

0 < x 2 < J1 - a ° (8.27) 

The functions M~, ,  ~ ,  and ~jh* are related to the functions 34~, dof and Ojh using formulae (8.18). 
The logarithmic singularities at the ends of the intervals of integration x = a0 and x = I in the system 

of equations ((8.26), (8.27) are removed by representing the integrals using formulae (8.11) and (8.12). 
Thus, as a result of regularization, the system of SIE is reduced to two systems of three linear Fredholm 

integral equations (8.10), (8.26) and (8.18), (8.27) of the second and third kinds with continuous kernels 
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and free terms, which solve the initial problem of dynamics over the whole range of changes in the elastic 
and velocity characteristics of the crack propagation respectively in the case of positive and negative 
signs of the ratio { = Awql2/Awpl2. By Fredholm's theorem, these systems have unique bounded solutions, 
which can be obtained by standard computational methods. 

I wish to thank R. B. Gol 'dshtein and the participants at the seminar of the Institute of Problems in 
Mechanics of the Russian Academy of Sciences under the chairmanship of V. M. Aleksandrov for 
discussing the formulation and solution of the problems which have been considered here. 
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